# Discovering Pi – the living maths of circles

Do you remember learning to calculate the circumference, diameter and area of a circle? If your experience was anything like mine, you were given this random 3.14 number (which for some reason the teacher kept referring to as pie), and told to plug some other numbers into a formula which you were then expected to memorise for the test.

Not exactly magical.

I wanted my daughter’s introduction to the mysterious properties of circles to be different. So last week I set up an activity to help her discover the magic for herself.

### What we did

I gathered a variety of flat circular objects (mostly lids), a ruler and some string, and was beginning to take some measurements in preparation for introducing the activity to C(9), when she came over and asked what I was doing (I love it when an activity starts that way).

I told C(9) that I was wondering whether, if I knew how much a big wheel measured across the middle, I could (without measuring) figure out the distance around its edge. I said I was starting out by measuring some smaller circles to see if I could find any pattern.

“Can I help?” she asked, grabbing a ruler and a lid.

#### Making a chart

As she worked, C(9) recorded her measurements in a chart.

Once she had four pairs of measurements, we were ready for the next stage.  I asked C(9) what our goal was, and wrote down her words: “To find out what the length across the middle is in relation to the length around the edge.”

#### Finding a relationship

C(9)’s first suggestion was that we calculate the difference between the two numbers in each pair of measurements.

But no pattern emerged, and she wasn’t sure where to go next.

#### Session 2 – Functions

I began our next session by reminding C(9) of our goal: “To find out what the length across the middle is in relation to the length around the edge,” and asked whether she’d had any thoughts about what to do next (no).

Then I asked her if she remembered learning about functions in Life of Fred. I wrote out some pairs of numbers and asked her to guess the function and apply it to a new case (I used “add 2”). Then she did the same for me (she chose doubling), and we did a few more.

#### Session 3 – Algebra

After our play with functions, C(9) returned to trying to find a relationship between the numbers in her chart.  She suspected multiplication was the key: “15.5 times something is 50.  But how do we know what the something is?”

By chance,  the previous week C(9) had learned how to balance simple algebraic equations (we’d picked a random chapter from Primary Grade Challenge Math), so I suggested that we try using algebra to calculate the missing something.

This may seem an unnecessarily complicated step, but given what we’d been doing recently, balancing equations was the easiest way for C(9) to see that if we want to know what we multiply x by to get y, we have to divide y by x.

She then solved the equation, first by estimating and then with a calculator. The first missing number came out as 3.2.  (At this point we had a little recap of decimal place value and rounding, and I reminded C(9) that our initial measurements had been rough and ready, using string.)

C(9) did the same for each pair of measurements, and got h=3.2 for all but one set, which came out as 3.4. (I’m not sure why the numbers were so consistent, when pi rounds to 3.1. But I guess it’s not too big a margin of error.)

I was pretty excited at this point, but managed to keep quiet because although C(9) could see the pattern, she wasn’t exactly jumping up and down yet.

We decided to test our newly-found relationship between the lid’s “middle” and “edge” on a new circle. C(9) drew a circle with compasses and wrote out the formula, “middle x 3.2 = edge”.

She measured the circle’s diameter, multiplied it by 3.2 and wrote down the answer, 23. Then we measured around the circle using string and a ruler – 23cm! C(9) was genuinely gobsmacked, like we’d just performed a magic trick – what a great learning state!

#### Session 4 – Introducing “pi”

In our next session, C(9) and I read Sir Cumference and the Dragon of Pi, in which a young knight has to solve a puzzle involving the relationship between a circle’s diameter and circumference, in order to save his father’s life. After the knight solves the puzzle, the book talks about how the Greek letter pi is used to represent the mathematical constant which is the key to that relationship.

### Many paths to pi

I’m sharing this story not because I think what we did is the only way to teach a child about pi. I’m a near-beginner at this living maths business, and I’m sure a better mathematician could have guided C(9) through the process of discovering pi much more efficiently.

I’m sharing what we did because we both learned so much as we happily worked together, and I’d love for others to experience that joy.

If I’d thought in advance about teaching C(9) everything she learned as we did this puzzle, I’d probably never have got round to starting, and who knows how she would have reacted if I’d listed all the concepts  she was going to use beforehand. But as we worked though our puzzle, C(9) had a reason to learn each new skill, and I had real examples to work with to teach her.

When the time is right to teach J(8) about pi, I have no doubt our path will be different, with tangential learning that fits his needs – I’m looking forward to it.

Has your student “discovered” pi? I’d love to hear of the learning route you took.

# Marshmallow Geometry Fun

Cocktail sticks and a pack of stale mini marshmallows are perfect supplies for some 3D marshmallow geometry.
We started out with simple shapes.

I wanted to make a fractal tetrahedron like these, but it turned out  trickier than  anticipated, especially without the instructions to hand.

My creation wasn’t very geometric! I’ve since read that the trick is to start with a flat base instead of a single tetrahedron.

Kinaesthetic learners will love this hands-on activity.  You end up with lightweight, tactile shapes that, thanks to the squidgy marshmallows, are strong enough to play around with until you’re satisfied with your shape.

J made me think of those creativity tests as he reeled off things his simple models could be (radiator, ladder, goalpost…).

As we played J asked if  we could have “Poetry Breakfast”.

It occurred to me how different my children’s first hearing of “Macavity The Mystery Cat” was to my own, in a classroom!